

A Roadmap for Grid Performance: reporting from the frontline

Stephen Jarvis

University of Warwick
Midlands e-Science Centre

Performance-based Middleware for Grid Computing

- Integrate established performance tools with emerging grid middleware
 - Understanding requirements of applications
 - Determine what resources are available
 - Matchmaking, while maintaining contract of performance
- Performance-aware services
 - Integrating performance into scheduling, workload management ...
 - Developing infrastructure support
 - Benchmarking middleware components
 - Stress-testing these solutions in e-Science framework
- · Common theme is performance awareness
- · Open issues depend on your viewpoint

A Roadmap for Grid Performance

System Services (Applications)

"We will send your result to your burial place..."

- Speed of response
 - Modes of analysis: Monitoring, modelling and simulation
 - Accuracy vs. lifetime vs. overhead
- More general resource consumption
 - Data, networking, computation, power
 - Mapping performance to cost (\$)
- Classes of application
 - · Scientific vs. business, data vs. compute
 - Performability and QoS
- Design
 - Composition in time (workflow) or space (component assembly)
 - Cost models (flow, sub-flow, tasks,...,flop)
 - Performance-based service selection

System Technologies (Architectures)

"Prediction is difficult, especially about the future..."

- Representing resources
 - How to represent resources (e.g. power?)
 - Relating this to the application
- Network
 - Bandwidth, response time, TCP perf.
 - Repositories (e.g. GridFTP logs and prediction)
 - · Management (provisioning) vs. monitoring
- Data
 - File transfer costs
 - Proximity and staging (JoSH)
- System views
 - Global snapshots
 - · Decay vs. quality

Operating Systems (Middleware)

"Turning off the security features improves performance..."

- Middleware design

- Additional complexities of the software stack (depth and composition)
- Benchmarking components (e.g. MDS) and competing implementations
- · Software and architectures evolving

- Middleware activities

- Scheduling and workload steering
- Reservation / co-allocation
- Charging (e.g. GESA-WG)

- Granularity

- Micro vs. macro performance data
- Reliability of data and services

Performance Integration

- Information services
 - Metadata definitions
 - Overhead
 - Built on services (e.g. self adapting and optimising perf. monitoring)
 - · Capturing perf. differences between VOs
- Logging and book-keeping
 - · Logging infrastructure
 - · Resource usage profiles (e.g. GridMon)
 - · Performance pathologies
- Grid benchmarking (GB-WG)
 - Test-beds and load generators
- Scenario testing
 - Adding / removing resources
 - Adding / removing / updating services

- What differentiates Grid performance research from classical performance research?
 - i.e. what existing work can be applied?, what new work is needed?
 - Techniques can be reused
 - Collaborative process (people, systems) is perhaps new
 - No greenroom, no one solution fits all
- Challenges and Opportunities in Grid Performability www.cs.ncl.ac.uk/research/pubs/trs/papers/842.pdf
- e-Science Performance Engineering Workshop www.nesc.ac.uk/action/esi/contribution.cfm?Title=127
- Open Issues in Grid Scheduling
 www.nesc.ac.uk/action/esi/contribution.cfm?Title=309
- High Performance Systems Group, Warwick www.dcs.warwick.ac.uk/research/hpsg